Publications

  • M. Santiago, K. A. Mitchell, S. Khatri, Numerical method for modeling photosynthesis of algae on pulsating soft corals, Physical Review Fluids, 7(3):033102, 2022, Editors’ Suggestion (pdf) (link)
     
  • M. Santiago, N. A. Battista, L. A. Miller, S. Khatri, Passive concentration dynamics incorporated into the library IB2d, a two-dimensional implementation of the immersed boundary method, Bioinspiration & Biomimetics, 17(3):036003, 2022 (pdf) (link) (Supplemental Data)
     
  • T. L. Mandel, D. Z. Zhou, L. Waldrop, M. Theillard, D. Kleckner, S. Khatri, Retention of rising oil droplets in density stratification, Physical Review Fluids, 5(12):124803, 2020 (pdf) (Supplementary Material: Movie1Movie2) (link)
     
  • S. Khatri, A. D. Kim, R. Cortez, C. Carvalho, Close evaluation of layer potentials in three dimensions, 423:109798, 2020 (pdf) (link)
     
  • E. Yoo, S. Khatri, F. Blanchette, Hydrodynamic forces on randomly formed marine aggregates, Physical Review Fluids, 5:044305, 2020 (pdf) (link)
     
  • C. Carvalho, S. Khatri, A. D. Kim, Asymptotic approximation for the close evaluation of double-layer potentials, SIAM Journal on Scientific Computing, 42:A504-A533, 2020 (pdf) (link)
     
  • J. E. Samson, L. A. Miller, D. Ray, R. Holzman, U. Shavit, S. Khatri, A novel mechanism of mixing by pulsing corals, Journal of Experimental Biology, 222:1-13, 2019 (pdf) (Supplementary InformationMovie1Movie2) (link)
     
  • L. D. Waldrop, Y. He, S. Khatri, What can computational modeling tell us about the diversity of odor-capture structures in the Pancrustacea?, Journal of Chemical Ecology, 44(12):1084-1100, 2018 (pdf) (link)
  • C. Carvalho, S. Khatri, A. D. Kim, Asymptotic analysis for close evaluation of layer potentials, Journal of Computational Physics, 355:327-341, 2018 (pdf) (link)
  • C. Carvalho, S. Khatri, and A. D. Kim, Local analysis of near fields in acoustic scattering, 13th International Conference on Mathematical and Numerical Aspects of Wave Propagation, Minneapolis, MN, 2017 (pdf)
  • N. A. Battista, J. E. Samson, S. Khatri, and L. A. Miller, Under the sea: Pulsing corals in ambient flow, Mathematical Methods and Models in Biosciences, International Conference BIOMATH 2017, Kruger Park, 2017 (pdf) (link)
  • S. Khatri and A.-K. Tornberg, An embedded boundary method for soluble surfactants with interface tracking for two phase flows, Journal of Computational Physics, 256:768-790, 2014 (pdf) (link
  • R. Camassa, S. Khatri, R. M. McLaughlin, J. C. Prairie, B. L. White, and S. Yu, Retention and entrainment effects: Experiments and theory for porous spheres settling in sharply stratified fluids, Physics of Fluids, 25:081701, 2013 (pdf) (link)
  • J. C. Prairie, K. Ziervogel, C. Arnosti, R. Camassa, C. Falcon, S. Khatri, R. McLaughlin, B. L. White, and S. Yu, Delayed settling of marine snow at sharp density transitions driven by fluid entrainment and diffusion-limited retention, Marine Ecology Progress Series, 487:185-200, 2013 (pdf) (link)
  • R. Camassa, S. Khatri, R. McLaughlin, K. Mertens, D. Nenon, C. Smith, and C. Viotti, Numerical simulations and experimental measurements of dense-core vortex rings in a sharply stratified environment, Computational Science & Discovery, 6:014001, 2013 (pdf) (link)
  • S. Khatri and A.-K. Tornberg, A numerical method for two phase flows with insoluble surfactants, Computers & Fluids, 49:150-165, 2011 (pdf) (link)
  • S. Khatri and A.-K. Tornberg, A numerical method for soluble surfactants on moving interfaces, Proceedings in Applied Mathematics and Mechanics, Special Issue: Sixth International Congress on Industrial and Applied Mathematics and GAMM Annual Meeting, 7(1):1024509-1024510, 2007 (pdf) (link)

Theses

  • S. Khatri, A Numerical Method for Two Phase Flows with Insoluble and Soluble Surfactants, Doctoral thesis, Courant Institute of Mathematical Sciences, New York University, 2009 (pdf)
  • S. Khatri, Surface Stress Induced Entrainment in Stratified Fluids, Honors thesis, Dept. of Mathematics, University of North Carolina at Chapel Hill, 2003 (pdf)